11 research outputs found

    Automated verification of model transformations based on visual contracts

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10515-012-0102-yModel-Driven Engineering promotes the use of models to conduct the different phases of the software development. In this way, models are transformed between different languages and notations until code is generated for the final application. Hence, the construction of correct Model-to-Model (M2M) transformations becomes a crucial aspect in this approach. Even though many languages and tools have been proposed to build and execute M2M transformations, there is scarce support to specify correctness requirements for such transformations in an implementation-independent way, i.e., irrespective of the actual transformation language used. In this paper we fill this gap by proposing a declarative language for the specification of visual contracts, enabling the verification of transformations defined with any transformation language. The verification is performed by compiling the contracts into QVT to detect disconformities of transformation results with respect to the contracts. As a proof of concept, we also report on a graphical modeling environment for the specification of contracts, and on its use for the verification of transformations in several case studies.This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13, the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D programme of the Madrid Region under project S2009/TIC-1650

    Reusing Model Transformations across Heterogeneous Metamodels

    Get PDF
    Model transformations are key enablers for multi-paradigm modeling. However, currently there is little support for reusing transformations in different contexts since they are tightly coupled to the metamodels they are defined upon, and hence reusing them for other metamodels becomes challenging. Inspired from generic programming, we proposed generic model-to-model transformations, which are defined over so-called metamodel concepts, which are later bound to specific metamodels. Nevertheless, the current binding mechanism lacks automated resolution support for recurring structural heterogeneities between metamodels. Therefore, based on a systematic classification of heterogeneities, we propose a flexible binding mechanism being able to automatically resolve recurring structural heterogeneities between metamodels. For this, the binding model is analyzed and required adaptors are automatically added to the transformation

    Co-Evolving Code with Evolving Metamodels

    Get PDF
    International audienceMetamodels play a significant role to describe and analyze the relations between domain concepts. They are also cornerstone to build a software language (SL) for a domain and its associated tooling. Metamodel definition generally drives code generation of a core API. The latter is further enriched by developers with additional code implementing advanced functionalities, e.g., checkers, recommenders, etc. When a SL is evolved to the next version, the metamodels are evolved as well before to regenerate the core API code. As a result, the developers added code both in the core API and the SL toolings may be impacted and thus may need to be co-evolved accordingly. Many approaches support the co-evolution of various artifacts when metamodels evolve. However, not the co-evolution of code. This paper fills this gap. We propose a semi-automatic co-evolution approach based on change propagation. The premise is that knowledge of the metamodel evolution changes can be propagated by means of resolutions to drive the code co-evolution. Our approach leverages on the abstraction level of metamodels where a given metamodel element has often different usages in the code. It supports alternative co-evaluations to meet different developers needs. Our work is evaluated on three Eclipse SL implementations, namely OCL, Modisco, and Papyrus over several evolved versions of metamodels and code. In response to five different evolved metamodels, we co-evolved 976 impacts over 18 projects.A comparison of our co-evolved code with the versioned ones shows the usefulness of our approach. Our approach was able to reach a weighted average of 87.4% and 88.9% respectively of precision and recall while supporting useful alternative co-evolution that developers have manually performed
    corecore